Retail Revenue Management; Merchandise; Elasticity


Recent advances in data collection technology and computing power yield opportunities to apply robust analytical methods to retail. Additional profitability can be obtained by leveraging data-mining techniques and optimization models to decisions that have heretofore been based heavily on experiential understanding. Scientific methods can be applied to the revenue-driving areas of merchandise such as assortment, pricing, placement, and promotion to obtain further insight and make more precise decisions.

Full Text : PDF

  1. Bijmolt, T.H.A., van Heerde, H.J., Pieters, R.G.M., 2005. New empirical                                             generalizations on the determinants of price elasticity. Journal of Marketing   Research 42 (2), 141-156.
  2. Bitran, G., Caldentey, R., 2003. An overview of pricing models for revenue    management. Manufacturing and Service Operations Management 5 (3), 203-229.
  3. Borle, S., Boatwright, P., Kadane, J.B., Nunes, J.C., Shmueli, G., 2005. The effect of   product assortment changes on customer retention. Marketing Science 24 (4), 616-622.
  4. Boyd, E.A., Bilegan, I.C., 2003. Revenue management and e-commerce.    Management
  5. Science 49 (10), 1363-1386.
  6. Chebat, J.C., Michon, R., 2003. Impact of ambient odors on mall shoppers’ emotions,    cognition, and spending: A test of competitive causal theories. Journal of Business   Research 56 (7), 529-539.
  7. Chong, J.K., Ho, T.H., Tang, C.S., 2001. A modeling framework for category     assortment planning. Manufacturing and Service Operations Management 3 (3), 191- 210.
  8. Curhan, R.C., 1973. Shelf space allocation and profit maximization in mass retailing.   Journal of Marketing  37 (3),  54-60.
  9. Desmet, P., Renaudin, V., 1998. Estimation of product category sales   responsiveness  to allocated shelf space. International Journal of Research in Marketing 15 (5),  443-457.
  10. Dreze, X., Hoch, S.J., Purk, M.E., 1994. Shelf management and space elasticity.   Journal  of Retailing 70 (4), 301-326.
  11. Fisher, M.L., Vaidyanathan, R., 2010. An algorithm and demand estimation     procedure for retail assortment optimization. Working paper, Operations and Information Management Department, The Wharton School, University of Pennsylvania.
  12. Hardesty, D.M., Bearden, W.O., Carlson, J.P., 2007. Persuasion knowledge and   consumer reactions to pricing tactics. Journal of Retailing 83 (2), 199-210.
  14. Harrell, G.D., Hutt, M.D., Anderson, J.C., 1980. Path analysis of buyer behavior   under  conditions of crowding. Journal of Marketing Research 17 (1), 45-51.
  15. Hoch, S.J., Bradlow, E.T., Wansink, B., 1999. The variety of an assortment.  Marketing  Science 18 (4), 527-546.
  16. Kim, B.D., Blattberg, R.C., Rossi, P.E., 1995. Modeling the distribution of price    sensitivity and implications for optimal retail pricing. Journal of Business and   Economic Statistics 13 (3), 291-303.
  17. Kimes, S.E., 1989. The basics of yield management. Cornell Hotel and Restaurant  Administration Quarterly 30 (3), 14-19.
  18. Kök, A.G., Fisher, M.L., 2007. Demand estimation and assortment optimization   under  substitution: Methodology and application. Operations Research 55 (6), 1001-1021.
  19. Krishnamurthi, L., Raj, S.P., 1991. An empirical analysis of the relationship            between brand loyalty and consumer price elasticity. Marketing Science 10 (2), 172-183.
  20.   Lattin, J.M., McAlister, L., 1985. Using a variety-seeking model to identify
  21.   substitute and complementary relationships among competing products. Journal of    Marketing Research 22 (3), 330-339.
  22.   Li, H.L., Chang, C.T., Tsai, J.F., 2002. Approximately global optimization for     assortment problems using piecewise linearization techniques. European Journal of    Operational Research 140 (3), 584-589.
  23.   Littlewood, K., 1972. Forecasting and control of passenger bookings. 12th AGIFORS   Symposium Proceedings 12: 95-117, Nathanya, Israel.
  24.   McCarthy, E.J., 1981. Basic Marketing: A Managerial Approach. Irwin Professional    Publishing, Homewood, IL.
  25.   Morrison, D.G., 1979. Purchase intentions and purchase behavior. Journal of  Marketing 43 (2), 65-74.
  26.   Moyer, M.S., 1972. Management science in retailing. Journal of Marketing 36 (1), 3-9.
  27.   Noone, B.M., Kimes, S.E., Renaghan, L.M., 2003. Integrating customer relationship   management and revenue management: A hotel perspective. Journal of Revenue and  Pricing Management 2 (1), 7-22.
  29.  Parker, P.M., 1992. Price elasticity dynamics over the adoption life cycle. Journal of  Marketing Research 29 (3), 358-367.
  30.  Parsons, A.G., 2003. Assessing the effectiveness of shopping mall promotions:  Customer analysis. International Journal of Retail and Distribution Management 31 (2), 74-79.
  31.  Pierce, A., 2009. The power of digital signage. Dealerscope,, accessed 2 February 2010.
  32.  Sayman, S., Hoch, S.J., Raju, J.S., 2002. Positioning of store brands. Marketing Science 21  (4), 378-397.
  33.  Schindler, R.M., 2006. The 99 price ending as a signal of a low-price appeal. Journal of  Retailing 82 (1), 71-77.
  34.  Sorensen, H., 2003. The science of shopping. Market Researching 15 (3), 30-35.
  35.  Stassen, R.E., Waller, M.A., 2002. Logistics and assortment depth in the retail supply  chain: Evidence from grocery categories. Journal of Business Logistics 23 (1), 125-143.
  36.  Upshaw, L.B., 1995. Building Brand Identity: A Strategy for Success in a Hostile  Marketplace. John Wiley, New York, NY. 
  37.  Urban, T.L., 1998. An inventory-theoretic approach to product assortment and shelf- space allocation. Journal of Retailing 74 (1), 15-35.
  38.  van Nierop, E., Fok, D., Franses, P.H., 2008. Interaction between shelf layout and  marketing effectiveness and its impact on optimizing shelf arrangements. Marketing  Science  27 (6),  1065-1082.
  39.  van Ryzin, G., Mahajan, S., 1999. On the relationship between inventory costs and   variety benefits in retail assortments. Management Science 45 (11), 1496-1509.
  40.  Yang, Y.H., Dudoit, S., Luu, P., Lin, D.M., Peng, V., Ngai, J., Speed, T.P., 2002.   Normalization for cDNA microarray data: A robust composite method addressing  single and multiple slide systematic variation. Nucleic Acids Research 30 (4), e15:1- e15:11.
  41.  Yücel, E., Karaesmen, F., Salman, F.S., Türkay, M., 2009. Optimizing product  assortment under customer-driven demand substitution. European Journal of  Operational Research 199 (3), 759-768.